EXERCISE - 01

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

- If A 2B = $\begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix}$ and 2A 3B = $\begin{bmatrix} -2 & 5 \\ 0 & 7 \end{bmatrix}$, then matrix B is equal to -
 - (A) $\begin{bmatrix} -4 & -5 \\ -6 & -7 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 6 \\ -3 & 7 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 6 & -1 \\ 0 & 1 \end{bmatrix}$

- $\label{eq:2.2} \textbf{2.} \qquad \text{If } A_{\alpha} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}, \text{ then } A_{\alpha}A_{\beta} \text{ is equal to } -$

(B) $A_{\alpha\beta}$

(C) $A_{\alpha-\beta}$

- (D) none of these
- 3. If number of elements in a matrix is 60 then how many different order of matrix are possible -

(B) 6

(C) 24

- (D) none of these
- Matrix A has x rows and x + 5 columns. Matrix B has y rows and 11 y columns. Both AB and BA exist, then -4.
 - (A) x = 3, y = 4
- (B) x = 4, y = 3 (C) x = 3, y = 8 (D) x = 8, y = 3

- If $A^2 = A$, then(I + A)⁴ is equal to -5.
 - (A) I + A

- (C) I + 15A
- (D) none of these
- If the product of n matrices $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is equal to the matrix $\begin{bmatrix} 1 & 378 \\ 0 & 1 \end{bmatrix}$ then the value of n is equal to -
 - (A) 26

- (C) 377
- (D) 378

- 7. If $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $(aI_2 + bA)^2 = A$, then -
 - (A) $a = b = \sqrt{2}$

- (B) $a = b = 1/\sqrt{2}$ (C) $a = b = \sqrt{3}$ (D) $a = b = 1/\sqrt{3}$
- If A is a skew symmetric matrix such that $A^{T}A = I$, then A^{4n-1} $(n \in \mathbb{N})$ is equal to -8.
 - $(A) A^T$

(C) - I

(D) A^T

- If $AA^T = I$ and det(A) = 1, then -9.
 - (A) Every element of A is equal to it's co-factor.
 - (B) Every element of A and it's co-factor are additive inverse of each other.
 - (C) Every element of A and it's co-factor are multiplicative inverse of each other.
 - (D) None of these
- 10. Which of the following is an orthogonal matrix -

(A)
$$\begin{bmatrix} 6/7 & 2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ 3/7 & -6/7 & 2/7 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 6/7 & 2/7 & 3/7 \\ 2/7 & -3/7 & 6/7 \\ 3/7 & 6/7 & -2/7 \end{bmatrix}$$

(C)
$$\begin{bmatrix} -6/7 & -2/7 & -3/7 \\ 2/7 & 3/7 & 6/7 \\ -3/7 & 6/7 & 2/7 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 6/7 & -2/7 & 3/7 \\ 2/7 & 2/7 & -3/7 \\ -6/7 & 2/7 & 3/7 \end{bmatrix}$$

- 11. If A is an orthogonal matrix & |A| = -1, then A^T is equal to -
 - (A) -A

- (C) -(adj A)
- (D) (adj A)

12. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$. If B is the inverse of matrix A, then α is -

$$(A) -2$$

- 13. Let the matrix A and B be defined as $A = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 7 & 3 \end{bmatrix}$ then the value of Det.(2A⁹B⁻¹), is -
 - (A) 2

(C) -1

(D) -2

14. If $\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then matrix A equals -

(A)
$$\begin{bmatrix} 7 & 5 \\ -11 & -8 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 7 & 1 \\ 34 & 5 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 7 & 1 \\ 34 & 5 \end{bmatrix}$$

$$(D) \begin{vmatrix} 5 & 3 \\ 13 & 8 \end{vmatrix}$$

- **15.** If $A = \begin{bmatrix} 0 & 5 \\ 0 & 0 \end{bmatrix}$ and $f(x) = 1 + x + x^2 + \dots + x^{16}$, then $f(A) = 1 + x + x^2 + \dots + x^{16}$

- (B) $\begin{vmatrix} 1 & 5 \\ 0 & 1 \end{vmatrix}$
- (C) $\begin{vmatrix} 1 & 5 \\ 0 & 0 \end{vmatrix}$
- (D) $\begin{vmatrix} 0 & 5 \\ 1 & 1 \end{vmatrix}$

- **16.** If $M = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $M^2 \lambda M I_2 = O$, then λ equals -
 - (A) -2

(C) -4

- (D) 4
- 17. If $A = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 4 \\ 2 & 3 \end{bmatrix}$ and $ABC = \begin{bmatrix} 4 & 8 \\ 3 & 7 \end{bmatrix}$, then C equals -

(A)
$$\frac{1}{66} \begin{bmatrix} 72 & -32 \\ 57 & -29 \end{bmatrix}$$

(A)
$$\frac{1}{66}\begin{bmatrix} 72 & -32\\ 57 & -29 \end{bmatrix}$$
 (B) $\frac{1}{66}\begin{bmatrix} -54 & -110\\ 3 & 11 \end{bmatrix}$ (C) $\frac{1}{66}\begin{bmatrix} -54 & 110\\ 3 & -11 \end{bmatrix}$ (D) $\frac{1}{66}\begin{bmatrix} -72 & 32\\ -57 & 29 \end{bmatrix}$

(C)
$$\frac{1}{66} \begin{bmatrix} -54 & 110 \\ 3 & -11 \end{bmatrix}$$

18. If P is a two-rowed matrix satisfying $P^T = P^{-1}$, then P can be -

(A)
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 (B)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 (C)
$$\begin{bmatrix} -\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

(B)
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

(C)
$$\begin{bmatrix} -\cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$

(D) none of these

(C) a⁸¹

(D) none of these

- (C) $\frac{1}{2}$ A
- (D) A

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- If A and B are square matrices of same order, then which of the following is correct -
 - (A) A + B = B + A

(B) A + B = A - B

(C) A - B = B - A

- (D) AB = BA
- A square matrix can always be expressed as a
 - (A) sum of a symmetric matrix and skew symmetric matrix of the same order
 - (B) difference of a symmetric matrix and skew symmetric matrix of the same order
 - (C) skew symmetric matrix
 - (D) symmetric matrix

- 23. Choose the correct answer:
 - (A) every scalar matrix is an identity matrix.
 - (B) every identity matrix is a scalar matrix
 - (C) transpose of transpose of a matrix gives the matrix itself.
 - (D) for every square matrix A there exists another matrix B such that AB = I = BA.
- **24.** Let a_{ij} denote the element of the i^{th} row and j^{th} column in a 3 3 matrix and let $a_{ij} = -a_{ji}$ for every i and j then this matrix is an -
 - (A) orthogonal matrix

- (B) singular matrix
- (C) matrix whose principal diagonal elements are all zero (D) skew symmetric matrix
- 25. Let A be an invertible matrix then which of the following is/are true :
 - (A) $|A^{-1}| = |A|^{-1}$
- (B) $(A^2)^{-1} = (A^{-1})^2$
- (C) $(A^T)^{-1} = (A^{-1})^T$
- (D) none of these
- **26.** If $A = \begin{bmatrix} 1 & 9 & -7 \\ i & \omega^n & 8 \\ 1 & 6 & \omega^{2n} \end{bmatrix}$, where $i = \sqrt{-1}$ and ω is complex cube root of unity, then tr(A) will be-
 - (A) 1, if $n = 3k, k \in N$
- (B) 3, if n = 3k, $k \in N$ (C) 0, if $n \neq 3k$, $k \in N$ (D) -1, if $n \neq 3k$, $n \in N$

- 27. If A is a square matrix, then -
 - (A) AAT is symmetric
- (B) AA^{T} is skew-symmetric (C) $A^{T}A$ is symmetric
- (D) A^TA is skew symmetric.

- **28.** If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfies the equation $x^2 + k = 0$, then -
- (A) a + d = 0 (B) k = -|A| (C) $k = a^2 + b^2 + c^2 + d^2$ (D) k = |A|
- 29. If A and B are invertible matrices, which one of the following statement is/are correct -
 - (A) $Adi(A) = |A|A^{-1}$

(B) $\det(A^{-1}) = |\det(A)|^{-1}$

(C) $(A + B)^{-1} = B^{-1} + A^{-1}$

- (D) $(AB)^{-1} = B^{-1}A^{-1}$
- $\textbf{30.} \quad \text{Matrix} \begin{bmatrix} a & b & (a\alpha b) \\ b & c & (b\alpha c) \\ 2 & 1 & 0 \end{bmatrix} \text{ is non invertible if } -$
 - (A) $\alpha = 1/2$
- (B) a, b, c are in A.P. (C) a, b, c are in G.P. (D) a, b, c are in H.P.

CHECK	YOUR GI	RASP		A	NSWER	KEY	EXERCISE-			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	Α	Α	Α	С	С	В	В	D	Α	Α
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	С	D	D	Α	В	D	В	В	D	D
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	Α	A,B	B,C	B,C,D	A,B,C	B,C	A,C	A,D	A,B,D	A,C

ERCISE - 02

THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- If A and B are square matrices of same order and $AA^{T} = I$ then $(A^{T}BA)^{10}$ is equal to -1.
 - (A) $AB^{10}A^{T}$
- (C) $A^{10}B^{10}(A^T)^{10}$
- (D) 10A^TBA
- 2. If A is a invertible idempotent matrix of order n, then adj A is equal to -
 - (A) $(adi A)^2$

- (D) none of these
- Matrix A = $\begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$, if xyz = 60 and 8x + 4y + 3z = 20, then A (adj A) is equal to -

- (A) $\begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix}$ (B) $\begin{bmatrix} 88 & 0 & 0 \\ 0 & 88 & 0 \\ 0 & 0 & 88 \end{bmatrix}$ (C) $\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$ (D) $\begin{bmatrix} 34 & 0 & 0 \\ 0 & 34 & 0 \\ 0 & 0 & 34 \end{bmatrix}$
- Let three matrices $A = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} 3 & -4 \\ -2 & 3 \end{bmatrix}$ then
 - $t_r(A) + t_r\left(\frac{ABC}{2}\right) + t_r\left(\frac{A(BC)^2}{4}\right) + t_r\left(\frac{A(BC)^3}{8}\right) + \dots + \infty =$
 - (A) 6

- (D) none of these
- Let A, B, C, D be (not necessarily square) real matrices such that $A^T = BCD$; $B^T = CDA$; $C^T = DAB$ and 5. D^{T} = ABC for the matrix S = ABCD, then which of the following is/are true
 - (A) $S^3 = S$

- (D) none of these
- If $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$ then let us define a function $f(x) = \det (A^T A^{-1})$ then which of the following can be the value of $f(f(f(f(\dots,f(x)))))$ $(n \ge 2)$ n times
 - (A) $f^n(x)$

- (D) nf(x)
- For a matrix $A = \begin{bmatrix} 1 & 2r-1 \\ 0 & 1 \end{bmatrix}$, the value of $\prod_{r=1}^{50} \begin{bmatrix} 1 & 2r-1 \\ 0 & 1 \end{bmatrix}$ is equal to -
- (B) $\begin{bmatrix} 1 & 4950 \\ 0 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 5050 \\ 0 & 1 \end{bmatrix}$
- If A and B are two invertible matrices of the same order, then adj (AB) is equal to -
- (B) $|B| |A| B^{-1} A^{-1}$ (C) $|B| |A| A^{-1} B^{-1}$ (D) $|A| |B| (AB)^{-1}$

- If $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & a & 1 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ -4 & 3 & c \\ 5/2 & -3/2 & 1/2 \end{bmatrix}$, then -

- (A) a = 1, c = -1 (B) a = 2, $c = -\frac{1}{2}$ (C) a = -1, c = 1 (D) $a = \frac{1}{2}$, $c = \frac{1}{2}$
- If A and B are different matrices satisfying $A^3 = B^3$ and $A^2B = B^2A$, then which of the following is/are
 - (A) $\det (A^2 + B^2)$ must be zero
 - (B) det (A B) must be zero
 - (C) det $(A^2 + B^2)$ as well as det (A B) must be zero
 - (D) At least one of det $(A^2 + B^2)$ or det (A B) must be zero

11. If
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, then-

(A) AdjA is zero matrix

(B) $Adj A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$

(C) $A^{-1} = A$

- 12. If A and B are square matrices of the same order such that $A^2 = A$, $B^2 = B$, AB = BA, then which one of the following may be true-
 - (A) $A(B)^2 = O$
- (B) $(A + B)^2 = A + B$ (C) $(A B)^2 = A B$
- (D) none of these

- 13. If B is an idempotent matrix and A = I B, then-
 - (A) $A^2 = A$
- (B) $A^2 = I$
- (C) $AB = \mathbf{O}$
- (D) BA = O
- $\textbf{14.} \quad \text{Let } \Delta_0 = \left| \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right| \text{ (where } \Delta_0 \neq 0 \text{) and let } \Delta_1 \text{ denote the determinant formed by the cofactors of elements of } \Delta_0 \text{ and } \Delta_2 \text{ denote the determinant formed by the cofactor at } \Delta_1 \text{ and so on } \Delta_n \text{ denotes the determinant formed}$ formed by the cofactors at Δ_{n-1} then the determinant value of Δ_n is -
 - (A) Δ_0^{2n}

(B) $\Delta_0^{2^n}$

(C) $\Delta_0^{n^2}$

(D) Δ_0^2

BRAIN	TEASERS			A	NSWER	KEY			EXE	ERCISE-2
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	A,B,C	С	Α	A,B	A,B,C	D	A,B,D	Α	A,B,C
Que.	11	12	13	14						
Ans.	B,C,D	A,B,C	A,C,D	В						

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

TRUE / FALSE

- 1. Let A, B be two matrices such that they commute, then $A^2 B^2 = (A B)(A + B)$
- **2.** If A is a periodic matrix with period 2 then $A^6 = A$.
- 3. Let A, B be two matrices such that they commute, then $(AB)^n = A^nB^n$.
- 4. All positive odd integral powers of skew symmetric matrix are symmetric.
- 5. Let A, B be two matrices, such that AB = A and BA = B, then $A^2 = A$ and $B^2 = B$.
- $\pmb{6}$. If A & B are symmetric matrices of same order then AB BA is symmetric.
- 7. If A and B are square matrices of order n, then A and B will commute, iff A λI and B λI commute for every scalar λ .

MATCH THE COLUMN

Following questions contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **ONE** statement in **Column-II**.

1. (Column-I		Column-II
		Matrix		Type of matrix
	(A)	$\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$	(p)	Idempotent
	(B)	$\begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$	(q)	Involutary
	(C)	$ \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1 \end{bmatrix} $	(r)	Nilpotent
	(D)	$\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$	(s)	Orthogonal

	Column-I	\bigcap	Column-II
(A)	If A is a square matrix of order 3 and	(p)	6
(B)	det A = 162 then $\det\left(\frac{A}{3}\right)$ = If A is a matrix such that $A^2 = A$ and $(I + A)^5 = I + \lambda A$ then $\frac{2\lambda + 1}{7}$	(q)	5
(C)	If $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$ and $A^2 - xA + yI = 0$	(r)	0
	then y - x =		
(D)	If $A = \begin{bmatrix} 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 \end{bmatrix}$ and	(s)	9
	$B = \begin{bmatrix} 1 & 3 & 5 & 7 \\ -3 & -3 & -10 & -10 \\ 5 & 10 & 5 & 0 \\ 7 & 10 & 0 & 7 \end{bmatrix} $ then $(AB)_{23}$		

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I
- (C) Statement-I is true, Statement-II is false
- (D) Statement-I is false, Statement-II is true
- 1. Statement I : If a, b, c are distinct real number and x, y, z are not all zero given that ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0, then $a + b + c \neq 0$

Statement - II: If a, b, c are distinct positive real number then $a^2 + b^2 + c^2 \neq ab + bc + ca$.

(A) A

(B) B

(C) C

- (D) D
- 2. Statement I: If A is skew symmetric matrix of order 3 then its determinant should be zero

Statement - II: If A is square matrix, then det A = det A' = det(-A')

(A) A

(B) B

(C) C

- (D) D
- 3. Statement-I: If A is a non-singular symmetric matrix, then its inverse is also symmetric.

Because

Statement-II: $(A^{-1})^T = (A^T)^{-1}$, where A is a non-singular symmetric matrix.

(A) A

(B) B

(C) C

- (D) D
- **4.** Statement I : There are only finitely many 2 = 2 matrices which commute with the matrix $\begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$.

Because

Statement - II: If A is non-singular, then it commutes with I, adj A and A^{-1} .

(A) A

(B) B

(C) C

- (D) D
- $\textbf{5.} \qquad \textbf{Statement-I}: \text{ If } \ x = \begin{bmatrix} \frac{\sqrt{3}+1}{2\sqrt{2}} & \frac{\sqrt{3}-1}{2\sqrt{2}} \\ \frac{1-\sqrt{3}}{2\sqrt{2}} & \frac{\sqrt{3}+1}{2\sqrt{2}} \end{bmatrix} \ A \begin{bmatrix} \frac{\sqrt{3}+1}{2\sqrt{2}} & \frac{1-\sqrt{3}}{2\sqrt{2}} \\ \frac{\sqrt{3}-1}{2\sqrt{2}} & \frac{\sqrt{3}+1}{2\sqrt{2}} \end{bmatrix} \ \& \ \text{if } A \ \text{is idempotent matrix then } x \ \text{is also idempotent}$

matrix.

Because

Statement-II: If P is an orthogonal matrix & Q = PAP^T , then $Q^n = PA^nP^T$.

(A) A

(B) B

(C) C

- (D) D
- **6.** Statement-I: The determinants of a matrix $A = [a_{ij}]_5$ where $a_{ij} + a_{ji} = 0$ for each i and j is zero.

Because

Statement-II: The determinant of a skew symmetric matrix of odd order is zero.

(A) A

(B) B

(C) C

(D) D

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Let P(x, y) be any point and $P'(x_1, y_1)$ be its image in x-axis then

$$x_1 = x$$
$$y_1 = -y$$

 $y_1^{'} = -y$ This system of equation is equivalent to the matrix equation.

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$$

where A is a square matrix of order 2

Similarly
$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = B \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} = C \begin{bmatrix} x \\ y \end{bmatrix}, \begin{bmatrix} x_4 \\ y_4 \end{bmatrix} = D \begin{bmatrix} x \\ y \end{bmatrix}$$

represents the reflection of point (x, y) in y-axis, origin and the line y = x respectively.

On the basis of above information, answer the following questions :

1. The value of A + B + C + D is -

(A)
$$\begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}$$
 (B) $\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (D)

Let X be a square matrix given by $X = A + AD^2 + AD^4 + \dots + AD^{2n-2}$, then X is -2.

Let P(a, b) be a point & $\begin{bmatrix} x \\ y \end{bmatrix}$ = DCBA $\begin{bmatrix} a \\ b \end{bmatrix}$ then Q(x, y) represents the reflection of point P(a, b) in -(D) line y = x(A) x-axis (B) y-axis (C) origin

Comprehension # 2

Matrix A is called orthogonal matrix if $AA^T = I = A^TA$. Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$ be an orthogonal matrix. Let $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} \;, \; \vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k} \;, \; \vec{c} = c_1 \vec{i} + c_2 \vec{j} + c_3 \vec{k} \;. \; Then \; |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \; \& \; \vec{a} \;. \\ \vec{b} = \vec{b} \;. \\ \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{a} = 0 \;\; i.e. \;. \; \vec{c} = \vec{c} \;. \\ \vec{c} = \vec{c}$ \vec{a} , \vec{b} & \vec{c} forms mutually perpendicular triad of unit vectors.

If abc = p and $Q = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$, where Q is an orthogonal matrix. Then.

On the basis of above information, answer the following questions :

The values of a + b + c is -

(A) 2 (B) p (C)
$$2p$$
 (D) ± 1

The values of ab + bc + ca is -

The value of $a^3 + b^3 + c^3$ is -

The equation whose roots are a, b, c is -

(A)
$$x^3 - 2x^2 + p = 0$$
 (B) $x^3 - px^2 + px + p = 0$

(C)
$$x^3 - 2x^2 + 2px + p = 0$$
 (D) $x^3 \pm x^2 - p = 0$

Comprehension # 3

If
$$A_0 = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
 and $B_0 = \begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$

 B_n = adj(B_{n-1}), $n \in N$ and I is an identity matrix of order 3.

On the basis of above information, answer the following questions :

- det. ($A_0 + A_0^2 B_0^2 + A_0^3 + A_0^4 B_0^4 + \dots 10$ terms) is equal to -1.
 - (A) 1000
- (B) -800

(D) -8000

- \boldsymbol{B}_{1} + \boldsymbol{B}_{2} + + \boldsymbol{B}_{49} is equal to -2.

- (C) $49B_0$
- (D) 49I

- For a variable matrix X the equation $A_0 X = B_0$ will have -3.
 - (A) unique solution
- (B) infinite solution
- (C) finitely many solution (D) no solution

IVII	SCLLLANLOUS	TIFE QUES	11014	ANSW	CK KEY		LALKCISL-3	
•	True / Fai	<u>lse</u>						
	1. T	2 . F	3. T	4. F	5 . T	6. F	7. T	
•	Match the	Column						
	$1. (A) \rightarrow (p),$	$(B) \rightarrow (q), (C)$	\rightarrow (s), (D) \rightarrow	→ (r)	$2. (A) \rightarrow$	(p) , $(B) \rightarrow (s)$, (C)	$(c) \rightarrow (q), (D) \rightarrow (r)$	
•	Assertion	& Reason						
	1. D	2 . C	3. A	4. D	5. A	6. A		
•	<u>Compreher</u>	nsion Base	d Questio	ons				
	Comprehen	sion # 1 :	1 . B	2. C	3. D			
	Comprehen	sion # 2 :	1 . D	2 . A	3. D	4. D		
	Comprehen	sion # 3 :	1. C	2. C	3. D			
								_

E_NODE6 (E)\Data\2014\Kota\JEF-Advanced\SMP\Maths\Unit#02\ENG\Part-1\02.MATRIX\02.EXERCISES.p65

CONCEPTUAL SUBJECTIVE EXERCISE

1. Find the value of x and y that satisfy the equations -

$$\begin{bmatrix} 3 & -2 \\ 3 & 0 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} y & y \\ x & x \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3y & 3y \\ 10 & 10 \end{bmatrix}$$

2. A is a square matrix of order n.

 ℓ = maximum number of distinct entries if A is a triangular matrix

m = maximum number of distinct entries if A is a diagonal matrix

p = minimum number of zeroes if A is a triangular matrix

If $\ell + 5 = p + 2m$, find the order of the matrix.

3. If the matrices $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

(a, b, c, d not all simultaneously zero) commute, find the value of $\frac{d-b}{a+c-b}$. Also show that the matrix which commutes with A is of the form $\begin{bmatrix} \alpha-\beta & 2\beta/3 \\ \beta & \alpha \end{bmatrix}$

- 4. Consider the two matrices A and B where $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$; $B = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$. Let n(A) denotes the number of elements in A. When the two matrices X and Y are not conformable for multiplication then n(XY) = 0

 If C = (AB)(B'A); D = (B'A)(AB) then, find the value of $\left(\frac{n(C)\left((|D|^2 + n(D)\right)}{n(A) n(B)}\right)$.
- **5.** Define $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$. Find a vertical vector V such that $(A^8 + A^6 + A^4 + A^2 + I)V = \begin{bmatrix} 0 \\ 11 \end{bmatrix}$

(where I is the 2 2 identity matrix).

- **6.** If A is an idempotent matrix and I is an identity matrix of the same order, find the value of n, $n \in N$, such that $(A + I)^n = I + 127 A$.
- 7. If the matrix A is involutary, show that $\frac{1}{2}(I+A)$ and $\frac{1}{2}(I-A)$ are idempotent and $\frac{1}{2}(I+A)$. $\frac{1}{2}(I-A)=0$.
- 8. Let X be the solution set of the equation $A^x = I$, where $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ and I is the corresponding unit matrix and $x \in N$ then find the minimum value of $\sum (\cos^x \theta + \sin^x \theta), \theta \in R$.
- 9. Express the matrix $\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & -6 \\ -1 & 0 & 4 \end{bmatrix}$ as a sum of a lower triangular matrix & an upper triangular matrix with zero

in leading diagonal of upper triangular matrix. Also express the matrix as a sum of a symmetric and a skew symmetric matrix.

- **10.** Given $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 1 \\ 2 & 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$. Find P such that BPA = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
- $\label{eq:lambda_state} \boldsymbol{11.} \quad \text{If } \boldsymbol{A} = \begin{bmatrix} \sin\alpha & -\cos\alpha & 0 \\ \cos\alpha & \sin\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ then find } |\boldsymbol{A}^T| \text{ and } |\boldsymbol{A}^{-1}|.$
- $\textbf{12.} \quad \text{Show that,} \quad \begin{bmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}.$
- $\textbf{13.} \quad \text{If } F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ then show that } F(x).F(y) = F(x+y). \quad \text{Hence prove that } [F(x)]^{-1} = F(-x).$
- **14.** If $A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$, then show that the matrix A is a root of the polynomial $f(x) = x^3 6x^2 + 7x + 2$.
- 15. Use matrix to solve the following system of equations

$$x + y + z = 3$$

$$x + y + z = 6$$

$$x + v + z = 3$$

$$x + y + z = 3$$

(a)
$$x + 2y + 3z = 4$$
 (b) $x + 4y + 9z = 6$

(b)
$$x - y + z = 2$$

 $2x + y - z = 1$

(c)
$$x + 2y + 3z = 4$$
 (d) $x + 2y + 3z = 4$

$$(d) x + 2y + 3z = 4$$

$$2x + 3y + 4z = 7$$
 $2x + 3$

1.
$$x = 3/2, y = 2$$
 2.

$$5. \qquad V = \begin{bmatrix} 0 \\ \frac{1}{11} \end{bmatrix}$$

$$6. n = 7$$

- $\mathbf{9.} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ -1 & 0 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 5 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{bmatrix}; \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & -3 \\ 2 & -3 & 4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 3 \\ 0 & 0 & -3 \\ -3 & 3 & 0 \end{bmatrix} \quad \mathbf{10.} \quad \begin{bmatrix} -4 & 7 & -7 \\ 3 & -5 & 5 \end{bmatrix}$

x = 2, y = 1, z = 0**15**. (a)

- (b) x = 1, y = 2, z = 3
- x = 2 + k, y = 1 2k, z = k where $k \in R$ (d) inconsistent, hence no solution

(ERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then prove that value of f and g satisfying the matrix equation $A^2 + fA + gI = O$ are equal to $-t_r(A)$ and determinant of A respectively. Given a, b, c, d are non zero reals and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
- A_{3} is a matrix such that |A| = a, $B = (adj \ A)$ such that |B| = b. Find the value of $(ab^2 + a^2b + 1)S$ where $\frac{1}{2}S = \frac{a}{b} + \frac{a^2}{b^3} + \frac{a^3}{b^5} + \dots$ up to ∞ , and a = 3.
- Find the number of 2 2 matrix satisfying: 3.

(a)
$$a_{ij}$$
 is 1 or -1;

(b)
$$a_{11}^2 + a_{12}^2 = a_{21}^2 + a_{22}^2 = 2$$
; (c) $a_{11}a_{21} + a_{12}a_{22} = 0$

(c)
$$a_{11}a_{21} + a_{12}a_{22} = 0$$

- If A is a skew symmetric matrix and I + A is non singular, then prove that the matrix $B = (I A)(I + A)^{-1}$ is an 4. orthogonal matrix. Use this to find a matrix B given $A = \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix}$.
- Given $A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$; $B = \begin{bmatrix} 9 & 3 \\ 3 & 1 \end{bmatrix}$. I is a unit matrix of order 2. Find all possible matrix X in the following cases.
- AX = A (b) XA = I(c) XB = O but $BX \neq O$.
- Determine the values of a and b for which the system $\begin{vmatrix} 3 & -2 & 1 \\ 5 & -8 & 9 \\ 2 & 1 & a \end{vmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b \\ 3 \\ -1 \end{bmatrix}$ 6.
 - (a) has a unique solution; (b) has no solution and
- (c) has infinitely many solutions
- 7. If A is an orthogonal matrix and B = AP where P is a non singular matrix then show that the matrix PB^{-1} is also orthogonal.
- If $\begin{bmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & 18 & 2007 \\ 0 & 1 & 36 \\ 0 & 0 & 1 \end{bmatrix}$ then find a + n.
- **9.** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $P = \begin{bmatrix} p \\ q \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Such that AP = P and a + d = 5050. Find the value of (ad bc).

BRAIN STORMING SUBJECTIVE EXERCISE

EXERCISE-4(B)

- (a) $X = \begin{bmatrix} a & b \\ 2-2a & 1-2b \end{bmatrix}$ for $a, b \in R$; (b) X does not exist; (c) $X = \begin{bmatrix} a & -3a \\ c & -3c \end{bmatrix}$ $a, c \in R$ and $3a + c \neq 0$
- - (a) $a \neq -3$; $b \in R$; (b) a = -3 and $b \neq 1/3$; (c) a = -3, b = 1/3

- **9**. 5049

EXERCISE - 05 [A]

JEE-[MAIN]: PREVIOUS YEAR QUESTIONS

$$\textbf{1.} \qquad \text{If } A = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \text{ and } A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \text{ then }$$

[AIEEE 2003]

(1)
$$\alpha = a^2 + b^2$$
, $\beta = a^2 - b^2$

(2)
$$\alpha = a^2 + b^2$$
, $\beta = ab$

(3)
$$\alpha = a^2 + b^2$$
, $\beta = 2ab$

(4)
$$\alpha = 2ab$$
, $\beta = a^2 + b^2$

2. If
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
 then-

[AIEEE 2004]

- (1) A^{-1} does not exist (2) $A^2 = I$
- (3) A = 0

$$(4) A = (-1) I$$

If $A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$ and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$ where $B = A^{-1}$, then α is equal to-

[AIEEE 2004]

(3) -2

(4) 5

If $A^2 - A + I = 0$, then the inverse of A 4.

[AIEEE 2005]

(1) I - A

(3) A

- (4) A + I
- If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, (by the principal of

mathematical induction)

[AIEEE-2005]

(1) $A^n = nA - (n-1)I$

(2) $A^n = 2^{n-1}A + (n-1)I$

(3) $A^n = nA + (n-1)I$

- (4) $A^n = 2^{n-1}A (n-1)I$
- If A and B are square matrices of size n n such that $A^2 B^2 = (A B)(A + B)$, then which of the following will 6. be always true-[AIEEE- 2006]
 - (1) AB = BA

- (2) Either of A or B is a zero matrix
- (3) Either of A or B is an identity matrix
- (4) A = B
- 7. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, a, b \in N. Then-

[AIEEE- 2006]

(1) there exist more than one but finite number of B's such that AB = BA

- (2) there exist exactly one B such that AB = BA
- (3) there exist infinitely many B's such that AB=BA
- (4) there cannot exist any B such that AB = BA
- Let $A=\begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$ If $|A^2|=25$, then $|\alpha|$ equals-8.

[AIEEE- 2006]

 $(1) 5^2$

(2) 1

(3) 1/5

- (4) 5
- 9. Let A be a 2 2 matrix with real entries. Let I be the 2 2 identity matrix. Denoted by tr(A), the sum of diagonal entries of A. Assume that $A^2 = I$.

Statement -1: If $A \neq I$ and $A \neq -I$, then det A = -1

[AIEEE- 2008]

Statement -2: If $A \neq I$ and $A \neq -I$, then $tr(A) \neq 0$.

- (1) Statement -1 is false, Statement -2 is true.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- (4) Statement-1 is true, Statement-2 is false

- 10. Let A be a square matrix all of whose entries are integers. Then which one of the following is true? [AIEEE- 2008]
 - (1) If det A = \pm 1, then A⁻¹ exists but all its entries are not necessarily integers
 - (2) If det A \neq ± 1 , then A⁻¹ exists and all its entries are non-integers
 - (3) If det A = ± 1 , then A⁻¹ exists and all its entries are integers
 - (4) If det $A = \pm 1$, then A^{-1} need not exist
- 11. Let A be a 2 2 matrix

[AIEEE- 2009]

Statement-1: adj (adj A) = A

Statement-2 : | adj A | = |A|

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.
- 12. The number of 3 3 non-singular matrices, with four entries as 1 and all other entries as 0, is :- [AIEEE-2010]
 - (1) Less than 4
- (2) 5

(3) 6

- (4) At least 7
- 13. Let A be a 2 2 matrix with non-zero entries and let $A^2 = I$, where I is 2 2 identity matrix. Define Tr(A) = sum of diagonal elements of A and |A| = determinant of matrix A. [AIEEE-2010]

Statement-1: Tr(A) = 0.

Statement-2 : |A| = 1.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (2) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1.
- (3) Statement-1 is true, Statement-2 is false.
- (4) Statement-1 is false, Statement-2 is true.
- 14. Let A and B be two symmetric matrices of order 3.

Statement-1: A(BA) and (AB)A are symmetric matrices.

Statement-2: AB is symmetric matrix if matrix multiplication of A with B is commutative. [AIEE]

[AIEEE-2011]

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
- 15. Statement-1: Determinant of a skew-symmetric matrix of order 3 is zero.

Statement-1: For any matrix A, $det(A^T) = det(A)$ and det(-A) = -det(A).

Where det(B) denotes the determinant of matrix B. Then:

[AIEEE-2011]

- (1) Statement-1 is true and statement-2 is false
- (2) Both statements are true

(3) Both statements are false

- (4) Statement-1 is false and statement-2 is true.
- **16.** If $\omega \neq 1$ is the complex cube root of unity and matrix $H = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, then H^{70} is equal to: [AIEEE-2011
 - (1) H

(2) 0

(3) -H

- $(4) H^2$
- 17. Let P and Q be 3 3 matrices with P \neq Q. If P³ = Q³ and P²Q = Q²P, then determinant of (P² + Q²) is equal to : [AIEEE-2012]
 - (1) -1

(2) -2

(3) 1

(4) 0

 $\textbf{18.} \quad \text{Let } A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}. \text{ If } u_1 \text{ and } u_2 \text{ are column matrices such that } Au_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ and } Au_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \text{ then } u_1 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_2 \text{ is } u_2 + u_2 \text{ is } u_1 + u_2 \text{ is } u_2 + u_$

equal to : [AIEEE-2012]

$$(1) \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

$$(2)\begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

$$(3) \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$

$$(4) \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}$$

PREVIO	US YEARS	QUESTIO	NS	A	NSWER	KEY			EXERC	ISE-5 [A]
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	2	4	1	1	1	3	3	4	3
Que.	11	12	13	14	15	16	17	18		
Ans.	4	4	3	4	1	1	4	1		

EXERCISE - 05 [B]

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

1. If matrix $A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ where a,b,c are real positive numbers, abc = 1 and A^T A = I, then find the value of

[JEE 2003, Mains 2M out of 60]

2. If $A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$ and $|A^3|$ = 125, then α is equal to -

[JEE 2004 (Screening)]

(A) ±3

(B) ±2

(C) ± 5

- (D) 0
- 3. If M is a 3 3 matrix, where $M^TM = I$ and det (M) = 1, then prove that det (M-I) = 0.

[JEE 2004 (Mains), 2M out of 60]

4. $A = \begin{bmatrix} a & 1 & 0 \\ 1 & b & d \\ 1 & b & c \end{bmatrix}, B = \begin{bmatrix} a & 1 & 1 \\ 0 & d & c \\ f & g & h \end{bmatrix}, U = \begin{bmatrix} f \\ g \\ h \end{bmatrix}, V = \begin{bmatrix} a^2 \\ 0 \\ 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$

If AX = U has infinitely many solutions, then prove that BX = V cannot have a unique solution. If further afd $\neq 0$, then prove that BX = V has no solution [JEE 2004 (Mains), 4M out of 60]

5. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } A^{-1} = \frac{1}{6} \left(A^2 + cA + dI \right), \text{ then the value of c and d are -}$

[JEE 2005 (Screening)]

- (A) -6, -11
- (B) 6, 11
- (C) -6, 11
- (D) 6, -11
- 6. If $P = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$, $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $Q = PAP^T$ and $x = P^T Q^{2005} P$, then x is equal to -

[JEE 2005 (Screening)]

(A)
$$\begin{bmatrix} 1 & 2005 \\ 0 & 1 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4 + 2005\sqrt{3} & 6015 \\ 2005 & 4 - 2005\sqrt{3} \end{bmatrix}$$

(C)
$$\frac{1}{4}\begin{bmatrix} 2+\sqrt{3} & 1\\ -1 & 2-\sqrt{3} \end{bmatrix}$$

(D)
$$\frac{1}{4} \begin{bmatrix} 2005 & 2 - \sqrt{3} \\ 2 + \sqrt{3} & 2005 \end{bmatrix}$$

Comprehension (3 questions)

7. $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}, \text{ if } U_1, \ U_2 \text{ and } U_3 \text{ are columns matrices satisfying.} \quad AU_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ AU_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \ AU_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \text{ and } U_3 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$

U is 3.3 matrix whose columns are $\rm U_1, \ \rm U_2, \ \rm U_3$ then answer the following questions -

- (a) The value of |U| is -
 - (A) 3
- (B) -3

(C) 3/2

(D) 2

- (b) The sum of the elements of U^{-1} is -
 - (A) -1
- (B) 0

(C) 1

(D) 3

- (c) The value of $\begin{bmatrix} 3 & 2 & 0 \end{bmatrix} U \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$ is -
 - (A) [5]
- (B) [5/2]
- (C) [4]

(D) [3/2]

[JEE 2006, 5 marks each]

1

8. Match the Statement / Expressions in Column I with the Statements / Expressions in Column II and indicate your answer by darkening the appropriate bubbles in the 4 4 matrix given in the ORS.

Column I Column II

(A) The minimum value of $\frac{x^2 + 2x + 4}{x + 2}$ is

(P) 0

(Q)

- (B) Let A and B be 3 3 matrices of real numbers, where A is symmetric, B is skew-symmetric, and $(A+B)(A-B) = (A-B) (A+B). \text{ If } (AB)^t = (-1)^k AB, \text{ where } (AB)^t$
- is the transpose of the matrix AB, then the possible values of k are (C) Let a = $\log_3\log_3 2$. An integer k satisfying $1<2^{(-k+3^{-a})}<2$,
- (R) 2

must be less than

- (S) 3

[JEE 2008, 6]

- 9. Let \mathcal{A} be the set of all 3 3 symmetric matrices all of whose entries are either 0 or 1. Five of these entries are 1 and four of them are 0.
 - (a) The number of matrices in \mathcal{A} is -
 - (A) 12
- (B) 6

(C) 9

- (D) 3
- (b) The number of matrices A in $\mathcal A$ for which the system of linear equations

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

has a unique solution, is -

(A) less than 4

(B) at least 4 but less than 7

(C) at least 7 but less than 10

- (D) at least 10
- (c) The number of matrices A in \mathcal{A} for which the system of linear equations

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

is inconsistent, is -

- (A) 0
- (B) more than 2
- (C) 2

(D) 1

[JEE 2009, 4+4+4]

10. (a) The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

has exactly two distinct solutions, is

- (A) 0
- (B) $2^9 1$
- (C) 168

(D) 2

Let k be a positive real number and let

$$A = \begin{bmatrix} 2k-1 & 2\sqrt{k} & 2\sqrt{k} \\ 2\sqrt{k} & 1 & -2k \\ -2\sqrt{k} & 2k & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & 2k-1 & \sqrt{k} \\ 1-2k & 0 & 2\sqrt{k} \\ -\sqrt{k} & -2\sqrt{k} & 0 \end{bmatrix}.$$

If det (adj A) + det(adj B) = 10^6 , then [k] is equal to

[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k].

Let p be an odd prime number and T_p be the following set of 2×2 matrices :

$$T_{p} = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \left\{0, 1, 2, \dots, p - 1\right\} \right\}$$

(i) The number of A in $T_{\scriptscriptstyle D}$ such that A is either symmetric or skew-symmetric or both, and det(A) divisible by p is -

(A)
$$(p - 1)^2$$

(B)
$$2 (p - 1)$$

(A)
$$(p-1)^2$$
 (B) 2 $(p-1)$ (C) $(p-1)^2+1$ (D) $(p-1)^2+1$

(ii) The number of A in $T_{_{\rm D}}$ such that the trace of A is not divisible by p but det (A) is divisible

[Note: The trace of a matrix is the sum of its diagonal entries.]

(A)
$$(p - 1) (p^2 - p + 1)$$

(B)
$$p^3 - (p - 1)^2$$

(C)
$$(p - 1)^2$$

(D)
$$(p - 1) (p^2 - 2)$$

(iii) The number of A in $T_{_{D}}$ such that det (A) is not divisible by p is -

(A)
$$2p^2$$

(B)
$$p^3 - 5p$$

(B)
$$p^3 - 5p$$
 (C) $p^3 - 3p$ (D) $p^3 - p^2$

(D)
$$p^3 - p^2$$

[JEE 2010, 3+3+3+3+3]

11. Let M and N be two 3 3 non-singular skew-symmetric matrices such that MN = NM. If P^{T} denotes the transpose of P, then $M^2N^2(M^TN)^{-1}$ $(MN^{-1})^T$ is equal to -[JEE 2011, 4]

(B)
$$-N^2$$

$$(C) -M^2$$

Let $\omega \neq 1$ be a cube root of unity and S be the set of all non-singular matrices of the form $\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix}$

where each of a,b and c is either ω or ω^2 . Then the number of distinct matrices in the set S is-

(A) 2

(B) 6

(C) 4

(D) 8

[JEE 2011, 3, (-1)]

Let M be 3 3 matrix satisfying

$$M\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}, M\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \text{ and } M\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 12 \end{bmatrix}$$

Then the sum of the diagonal entries of M is

[JEE 2011, 4]

Let $P = [a_{ij}]$ be a 3 3 matrix and let $Q = [b_{ij}]$, where $b_{ij} = 2^{i+j}a_{ij}$ for $1 \le i, j \le 3$. If the determinant of P is 2, then the determinant of the matrix Q is -[JEE 2012, 3M, -1M]

(A)
$$2^{10}$$

(B)
$$2^{11}$$

(C)
$$2^{12}$$

(D)
$$2^{13}$$

15. If P is a 3 3 matrix such that $P^T = 2P + I$, where P^T is the transpose of P and I is the 3 3 identity matrix, then

there exists a column matrix
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
 such that

[JEE 2012, 3M, -1M]

[JEE 2012, 4M]

- (A) $PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- (B) PX = X
- (C) PX = 2X
- (D) PX = -X
- **16.** If the adjoint of a 3 $\frac{1}{3}$ matrix P is $\begin{bmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 2 & 1 & 3 \end{bmatrix}$, then the possible value(s) of the determinant of P
 - is (are) -(A) -2

(B) -1

(C) 1

(D) 2

PREVI	OUS YEA	ARS QU	ESTION	S		ANSW	ER KEY			EΣ	ERCISE-5	[B]
1.	4	2.	Α	5.	С	6.	Α	7.	(a) A, (b) B,	(c) A		
8.	(A) R (B) Q,S (C) R,S ((D) P,R		9.	(a) A, (b) B,	(c) B				
10.	(a) A,	(b) 4; (d	c) (i) D,	(ii) C,	(iii) D	11.	Bonus	12	. A	13.	9	
14.	D	15.	D	16.	A,D							